Modelos LLM

AI-Driven Semantic Data Categorization

Objetivo del proyecto

SEAT tiene establecido un sistema de feedback de clientes en el que de forma recurrente se mandan encuestas de satisfacción a compradores de nuevos vehículos o clientes de servicio postventa, como talleres oficiales de la marca. Este proceso se realiza en todos los principales países de Europa para todas las marcas del Grupo Volkswagen.

Como parte de los cuestionarios de satisfacción, se incluyen una serie de preguntas de respuesta abierta en el que los usuarios detallan aquellos aspectos que más gustan o que menos gustan del producto comprado o el servicio recibido. Estas respuestas, escritas en texto libre por los usuarios, contienen gran cantidad de inputs de interés para los equipos de desarrollo de producto.

En este contexto, SEAT nos contrató para llevar a cabo el análisis de toda esta información con los siguientes objetivos:

Discovery de nuevos grupos de categorías temáticas de feedback

  • Revisión de la categorización existente

Clasificación de feedback de clientes en cada categoría de interés de la marca

  • Cuantificación de comentarios por categoría
  • Insights concretos de cada temática

Generación de herramientas de reporting

  • Dashboards de resultados
  • Herramientas de IA generativa para elaboración de informes y resúmenes

SOLUCIÓN KRAZ

Nuestra solución se basó en usar modelos LLM para la realización de las distintas tareas aplicadas a unos 100.000 comentarios.

Detalles técnicos del proceso:

  • Homogeneización del feedback bajo un mismo paraguas contextual, para ello se realizó la traducción de los comentarios de los distintos idiomas (alemán, francés, español, italiano) a inglés
  • Creación de categorías de conversación a varios niveles de detalle (10 categorías, 50 subcategorías)
  • Asignación de cada comentario a las distintas categorías definidas

Desde Kraz utilizamos las herramientas de Open AI para la ejecución de las distintas tareas asociadas al proyecto. La combinación del interfaz conversacional (ChatGPT) y la API de GPT-4o nos permitieron la ejecución completa del proyecto.

Resultados del proyecto

Los resultados de los distintos proyectos que implementamos desde Kraz han permitido, entre otros:

  • Detectar las distintas categorías de comentarios, definiendo más de 50 temáticas distintas de contenidos, agrupadas en unas 10 grandes temáticas de primer nivel.
  • Identificar categorías temáticas no anteriormente clasificadas, aflorando contenidos capilares concretos relevantes para los distintos equipos de trabajo
  • Cuantificar el volumen de comentarios asociados con cada categoría, pudiendo realizar comparativas entre marcas del grupo VW, modelos de coche, países de comercialización, etc.
  • Acceso a información de primera mano por parte de los equipos internos de la marca (equipos que trabajan en las distintas funcionalidades del coche). El input de clientes es canalizado directamente a cada uno de los equipos relacionados con el feedback.
  • Establecimiento de una nueva clasificación de referencia a mantener en siguientes oleadas de datos.
  • Puesta en marcha de un chatbot para análisis de datos basado en IA en el que, a través de inputs conversacionales, ejecutan resúmenes, comparativas y análisis detallados que facilitan enormemente el análisis y la toma de decisiones.
{

«La adopción de los LLM nos ha proporcionado muchísima más rapidez en el tratamiento de la información recogida en los cuestionarios de satisfacción. Nos ha dado mayor objetividad y diversidad en la identificación y clasificación de los temas expresados por los clientes. Y además nos ofrece mucha mayor capacidad para resumir la información contenida y generar respuestas adecuadas a preguntas formuladas en lenguaje natural.»

 

«KRAZ reúne un incuestionable know how en tecnología digital y tratamiento de datos, a la vez que un profundo conocimiento de investigación de mercados, acompañado de una notable orientación al cliente. Todo ello ha permitido conseguir los objetivos del proyecto con la mayor eficiencia y satisfacción.»

Benet Pujol – Head of Market Research –  SEAT